
pipenv Documentation
Release 2018.05.18

Kenneth Reitz

Jul 03, 2018

Contents

1 Install Pipenv Today! 3
1.1 Pipenv & Virtual Environments . 4
1.2 Homebrew Installation of Pipenv . 7
1.3 Pragmatic Installation of Pipenv . 7
1.4 Crude Installation of Pipenv . 7

2 User Testimonials 9

3 Pipenv Features 11
3.1 Basic Concepts . 11
3.2 Other Commands . 11

4 Further Documentation Guides 13
4.1 Basic Usage of Pipenv . 13
4.2 Advanced Usage of Pipenv . 20
4.3 Frequently Encountered Pipenv Problems . 31

5 Pipenv Usage 33
5.1 pipenv . 33

6 Indices and tables 41

i

ii

pipenv Documentation, Release 2018.05.18

Pipenv — the officially recommended Python packaging tool from Python.org, free (as in freedom).

Pipenv is a tool that aims to bring the best of all packaging worlds (bundler, composer, npm, cargo, yarn, etc.) to the
Python world. Windows is a first-class citizen, in our world.

It automatically creates and manages a virtualenv for your projects, as well as adds/removes packages from your
Pipfile as you install/uninstall packages. It also generates the ever-important Pipfile.lock, which is used to
produce deterministic builds.

Pipenv is primarily meant to provide users and developers of applications with an easy method to setup a working
environment. For the distinction between libraries and applications and the usage of setup.py vs Pipfile to
define dependencies, see Pipfile vs setup.py.

The problems that Pipenv seeks to solve are multi-faceted:

• You no longer need to use pip and virtualenv separately. They work together.

• Managing a requirements.txt file can be problematic, so Pipenv uses Pipfile and Pipfile.lock
to separate abstract dependency declarations from the last tested combination.

• Hashes are used everywhere, always. Security. Automatically expose security vulnerabilities.

• Strongly encourage the use of the latest versions of dependencies to minimize security risks arising from out-
dated components.

• Give you insight into your dependency graph (e.g. $ pipenv graph).

• Streamline development workflow by loading .env files.

Contents 1

https://pypi.python.org/pypi/pipenv
https://pypi.python.org/pypi/pipenv
https://pypi.python.org/pypi/pipenv
https://packaging.python.org/tutorials/managing-dependencies/#managing-dependencies
https://www.kennethreitz.org/essays/a-better-pip-workflow
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities

pipenv Documentation, Release 2018.05.18

2 Contents

CHAPTER 1

Install Pipenv Today!

Just use pip:

$ pip install pipenv

Or, if you’re using Ubuntu 17.10:

$ sudo apt install software-properties-common python-software-properties
$ sudo add-apt-repository ppa:pypa/ppa
$ sudo apt update
$ sudo apt install pipenv

Otherwise, if you’re on MacOS, you can install Pipenv easily with Homebrew:

$ brew install pipenv

3

pipenv Documentation, Release 2018.05.18

1.1 Pipenv & Virtual Environments

This tutorial walks you through installing and using Python packages.

It will show you how to install and use the necessary tools and make strong recommendations on best practices.
Keep in mind that Python is used for a great many different purposes, and precisely how you want to manage your
dependencies may change based on how you decide to publish your software. The guidance presented here is most
directly applicable to the development and deployment of network services (including web applications), but is also
very well suited to managing development and testing environments for any kind of project.

Note: This guide is written for Python 3, however, these instructions should work fine on Python 2.7—if you are still
using it, for some reason.

1.1.1 Make sure you’ve got Python & pip

Before you go any further, make sure you have Python and that it’s available from your command line. You can check
this by simply running:

$ python --version

You should get some output like 3.6.2. If you do not have Python, please install the latest 3.x version from python.org
or refer to the Installing Python section of The Hitchhiker’s Guide to Python.

Note: If you’re newcomer and you get an error like this:

4 Chapter 1. Install Pipenv Today!

https://python.org
http://docs.python-guide.org/en/latest/starting/installation/

pipenv Documentation, Release 2018.05.18

>>> python
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'python' is not defined

It’s because this command is intended to be run in a shell (also called a terminal or console). See the Python for
Beginners getting started tutorial for an introduction to using your operating system’s shell and interacting with Python.

Additionally, you’ll need to make sure you have pip available. You can check this by running:

$ pip --version
pip 9.0.1

If you installed Python from source, with an installer from python.org, or via ‘Homebrew‘_ you should already have
pip. If you’re on Linux and installed using your OS package manager, you may have to install pip separately.

If you plan to install pipenv using Homebrew you can skip this step. The Homebrew installer takes care of pip for you.

1.1.2 Installing Pipenv

Pipenv is a dependency manager for Python projects. If you’re familiar with Node.js’ npm or Ruby’s bundler, it is
similar in spirit to those tools. While pip can install Python packages, Pipenv is recommended as it’s a higher-level
tool that simplifies dependency management for common use cases.

Use pip to install Pipenv:

$ pip install --user pipenv

Note: This does a user installation to prevent breaking any system-wide packages. If pipenv isn’t available in your
shell after installation, you’ll need to add the user base’s binary directory to your PATH.

On Linux and macOS you can find the user base binary directory by running python -m site --user-base
and adding bin to the end. For example, this will typically print ~/.local (with ~ expanded to the absolute path
to your home directory) so you’ll need to add ~/.local/bin to your PATH. You can set your PATH permanently
by modifying ~/.profile.

On Windows you can find the user base binary directory by running py -m site
--user-site and replacing site-packages with Scripts. For example, this could return
C:\Users\Username\AppData\Roaming\Python36\site-packages so you would need to set
your PATH to include C:\Users\Username\AppData\Roaming\Python36\Scripts. You can set your
user PATH permanently in the Control Panel. You may need to log out for the PATH changes to take effect.

1.1.3 Installing packages for your project

Pipenv manages dependencies on a per-project basis. To install packages, change into your project’s directory (or just
an empty directory for this tutorial) and run:

$ cd myproject
$ pipenv install requests

Pipenv will install the excellent Requests library and create a Pipfile for you in your project’s directory. The Pipfile
is used to track which dependencies your project needs in case you need to re-install them, such as when you share
your project with others. You should get output similar to this (although the exact paths shown will vary):

1.1. Pipenv & Virtual Environments 5

https://opentechschool.github.io/python-beginners/en/getting_started.html#what-is-python-exactly
https://python.org
https://pip.pypa.io/en/stable/installing/
https://www.npmjs.com/
http://bundler.io/
https://pip.pypa.io/en/stable/user_guide/#user-installs
https://docs.python.org/3/library/site.html#site.USER_BASE
https://stackoverflow.com/a/14638025
https://msdn.microsoft.com/en-us/library/windows/desktop/bb776899(v=vs.85).aspx
https://python-requests.org

pipenv Documentation, Release 2018.05.18

Creating a Pipfile for this project...
Creating a virtualenv for this project...
Using base prefix '/usr/local/Cellar/python3/3.6.2/Frameworks/Python.framework/
→˓Versions/3.6'
New python executable in ~/.local/share/virtualenvs/tmp-agwWamBd/bin/python3.6
Also creating executable in ~/.local/share/virtualenvs/tmp-agwWamBd/bin/python
Installing setuptools, pip, wheel...done.

Virtualenv location: ~/.local/share/virtualenvs/tmp-agwWamBd
Installing requests...
Collecting requests

Using cached requests-2.18.4-py2.py3-none-any.whl
Collecting idna<2.7,>=2.5 (from requests)

Using cached idna-2.6-py2.py3-none-any.whl
Collecting urllib3<1.23,>=1.21.1 (from requests)

Using cached urllib3-1.22-py2.py3-none-any.whl
Collecting chardet<3.1.0,>=3.0.2 (from requests)

Using cached chardet-3.0.4-py2.py3-none-any.whl
Collecting certifi>=2017.4.17 (from requests)

Using cached certifi-2017.7.27.1-py2.py3-none-any.whl
Installing collected packages: idna, urllib3, chardet, certifi, requests
Successfully installed certifi-2017.7.27.1 chardet-3.0.4 idna-2.6 requests-2.18.4
→˓urllib3-1.22

Adding requests to Pipfile's [packages]...
P.S. You have excellent taste!

1.1.4 Using installed packages

Now that Requests is installed you can create a simple main.py file to use it:

import requests

response = requests.get('https://httpbin.org/ip')

print('Your IP is {0}'.format(response.json()['origin']))

Then you can run this script using pipenv run:

$ pipenv run python main.py

You should get output similar to this:

Your IP is 8.8.8.8

Using $ pipenv run ensures that your installed packages are available to your script. It’s also possible to spawn a
new shell that ensures all commands have access to your installed packages with $ pipenv shell.

1.1.5 Next steps

Congratulations, you now know how to install and use Python packages!

6 Chapter 1. Install Pipenv Today!

pipenv Documentation, Release 2018.05.18

1.2 Homebrew Installation of Pipenv

Homebrew is a popular open-source package management system for macOS.

Installing pipenv via Homebrew will keep pipenv and all of its dependencies in an isolated virtual environment so it
doesn’t interfere with the rest of your Python installation.

Once you have installed Homebrew simply run:

$ brew install pipenv

To upgrade pipenv at any time:

$ brew upgrade pipenv

1.3 Pragmatic Installation of Pipenv

If you have a working installation of pip, and maintain certain “toolchain” type Python modules as global utilities in
your user environment, pip user installs allow for installation into your home directory. Note that due to interaction
between dependencies, you should limit tools installed in this way to basic building blocks for a Python workflow like
virtualenv, pipenv, tox, and similar software.

To install:

$ pip install --user pipenv

For more information see the user installs documentation, but to add the installed cli tools from a pip user install to
your path, add the output of:

$ python -c "import site; import os; print(os.path.join(site.USER_BASE, 'bin'))"

To upgrade pipenv at any time:

$ pip install --user --upgrade pipenv

1.4 Crude Installation of Pipenv

If you don’t even have pip installed, you can use this crude installation method, which will bootstrap your whole
system:

$ curl https://raw.githubusercontent.com/kennethreitz/pipenv/master/get-pipenv.py |
→˓python

Congratulations, you now have pip and Pipenv installed!

1.2. Homebrew Installation of Pipenv 7

https://brew.sh/
https://pip.pypa.io/en/stable/user_guide/#user-installs
https://pip.pypa.io/en/stable/user_guide/#user-installs

pipenv Documentation, Release 2018.05.18

8 Chapter 1. Install Pipenv Today!

CHAPTER 2

User Testimonials

Jannis Leidel, former pip maintainer— Pipenv is the porcelain I always wanted to build for pip. It fits my brain
and mostly replaces virtualenvwrapper and manual pip calls for me. Use it.

David Gang— This package manager is really awesome. For the first time I know exactly what my dependencies are
which I installed and what the transitive dependencies are. Combined with the fact that installs are deterministic,
makes this package manager first class, like cargo.

Justin Myles Holmes— Pipenv is finally an abstraction meant to engage the mind instead of merely the filesystem.

9

pipenv Documentation, Release 2018.05.18

10 Chapter 2. User Testimonials

CHAPTER 3

Pipenv Features

• Enables truly deterministic builds, while easily specifying only what you want.

• Generates and checks file hashes for locked dependencies.

• Automatically install required Pythons, if pyenv is available.

• Automatically finds your project home, recursively, by looking for a Pipfile.

• Automatically generates a Pipfile, if one doesn’t exist.

• Automatically creates a virtualenv in a standard location.

• Automatically adds/removes packages to a Pipfile when they are un/installed.

• Automatically loads .env files, if they exist.

The main commands are install, uninstall, and lock, which generates a Pipfile.lock. These are in-
tended to replace $ pip install usage, as well as manual virtualenv management (to activate a virtualenv, run $
pipenv shell).

3.1 Basic Concepts

• A virtualenv will automatically be created, when one doesn’t exist.

• When no parameters are passed to install, all packages [packages] specified will be installed.

• To initialize a Python 3 virtual environment, run $ pipenv --three.

• To initialize a Python 2 virtual environment, run $ pipenv --two.

• Otherwise, whatever virtualenv defaults to will be the default.

3.2 Other Commands

• graph will show you a dependency graph, of your installed dependencies.

11

pipenv Documentation, Release 2018.05.18

• shell will spawn a shell with the virtualenv activated.

• run will run a given command from the virtualenv, with any arguments forwarded (e.g. $ pipenv run
python or $ pipenv run pip freeze).

• check checks for security vulnerabilities and asserts that PEP 508 requirements are being met by the current
environment.

12 Chapter 3. Pipenv Features

CHAPTER 4

Further Documentation Guides

4.1 Basic Usage of Pipenv

This document covers some of Pipenv’s more basic features.

13

pipenv Documentation, Release 2018.05.18

4.1.1 Example Pipfile & Pipfile.lock

Here is a simple example of a Pipfile and the resulting Pipfile.lock.

Example Pipfile

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
requests = "*"

[dev-packages]
pytest = "*"

Example Pipfile.lock

{
"_meta": {

"hash": {
"sha256":

→˓"8d14434df45e0ef884d6c3f6e8048ba72335637a8631cc44792f52fd20b6f97a"
},
"host-environment-markers": {

"implementation_name": "cpython",
"implementation_version": "3.6.1",
"os_name": "posix",
"platform_machine": "x86_64",
"platform_python_implementation": "CPython",
"platform_release": "16.7.0",
"platform_system": "Darwin",
"platform_version": "Darwin Kernel Version 16.7.0: Thu Jun 15 17:36:27

→˓PDT 2017; root:xnu-3789.70.16~2/RELEASE_X86_64",
"python_full_version": "3.6.1",
"python_version": "3.6",
"sys_platform": "darwin"

},
"pipfile-spec": 5,
"requires": {},
"sources": [

{
"name": "pypi",
"url": "https://pypi.python.org/simple",
"verify_ssl": true

}
]

},
"default": {

"certifi": {
"hashes": [

→˓"sha256:54a07c09c586b0e4c619f02a5e94e36619da8e2b053e20f594348c0611803704",

14 Chapter 4. Further Documentation Guides

pipenv Documentation, Release 2018.05.18

→˓"sha256:40523d2efb60523e113b44602298f0960e900388cf3bb6043f645cf57ea9e3f5"
],
"version": "==2017.7.27.1"

},
"chardet": {

"hashes": [

→˓"sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691",

→˓"sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae"
],
"version": "==3.0.4"

},
"idna": {

"hashes": [

→˓"sha256:8c7309c718f94b3a625cb648ace320157ad16ff131ae0af362c9f21b80ef6ec4",

→˓"sha256:2c6a5de3089009e3da7c5dde64a141dbc8551d5b7f6cf4ed7c2568d0cc520a8f"
],
"version": "==2.6"

},
"requests": {

"hashes": [

→˓"sha256:6a1b267aa90cac58ac3a765d067950e7dbbf75b1da07e895d1f594193a40a38b",

→˓"sha256:9c443e7324ba5b85070c4a818ade28bfabedf16ea10206da1132edaa6dda237e"
],
"version": "==2.18.4"

},
"urllib3": {

"hashes": [

→˓"sha256:06330f386d6e4b195fbfc736b297f58c5a892e4440e54d294d7004e3a9bbea1b",

→˓"sha256:cc44da8e1145637334317feebd728bd869a35285b93cbb4cca2577da7e62db4f"
],
"version": "==1.22"

}
},
"develop": {

"py": {
"hashes": [

→˓"sha256:2ccb79b01769d99115aa600d7eed99f524bf752bba8f041dc1c184853514655a",

→˓"sha256:0f2d585d22050e90c7d293b6451c83db097df77871974d90efd5a30dc12fcde3"
],
"version": "==1.4.34"

},
"pytest": {

"hashes": [

→˓"sha256:b84f554f8ddc23add65c411bf112b2d88e2489fd45f753b1cae5936358bdf314",

→˓"sha256:f46e49e0340a532764991c498244a60e3a37d7424a532b3ff1a6a7653f1a403a"

4.1. Basic Usage of Pipenv 15

pipenv Documentation, Release 2018.05.18

],
"version": "==3.2.2"

}
}

}

4.1.2 General Recommendations & Version Control

• Generally, keep both Pipfile and Pipfile.lock in version control.

• Do not keep Pipfile.lock in version control if multiple versions of Python are being targeted.

• Specify your target Python version in your Pipfile’s [requires] section. Ideally, you should only have one
target Python version, as this is a deployment tool.

• pipenv install is fully compatible with pip install syntax, for which the full documentation can be
found here.

4.1.3 Example Pipenv Workflow

Clone / create project repository:

...
$ cd myproject

Install from Pipfile, if there is one:

$ pipenv install

Or, add a package to your new project:

$ pipenv install <package>

This will create a Pipfile if one doesn’t exist. If one does exist, it will automatically be edited with the new package
your provided.

Next, activate the Pipenv shell:

$ pipenv shell
$ python --version
...

4.1.4 Example Pipenv Upgrade Workflow

• Find out what’s changed upstream: $ pipenv update --outdated.

• Upgrade packages, two options:

1. Want to upgrade everything? Just do $ pipenv update.

2. Want to upgrade packages one-at-a-time? $ pipenv update <pkg> for each outdated package.

16 Chapter 4. Further Documentation Guides

https://pip.pypa.io/en/stable/user_guide/#installing-packages

pipenv Documentation, Release 2018.05.18

4.1.5 Importing from requirements.txt

If you only have a requirements.txt file available when running pipenv install, pipenv will automatically
import the contents of this file and create a Pipfile for you.

You can also specify $ pipenv install -r path/to/requirements.txt to import a requirements file.

If your requirements file has version numbers pinned, you’ll likely want to edit the new Pipfile to remove those,
and let pipenv keep track of pinning. If you want to keep the pinned versions in your Pipfile.lock for now, run
pipenv lock --keep-outdated. Make sure to upgrade soon!

4.1.6 Specifying Versions of a Package

To tell pipenv to install a specific version of a library, the usage is simple:

$ pipenv install requests==2.13.0

This will update your Pipfile to reflect this requirement, automatically.

4.1.7 Specifying Versions of Python

To create a new virtualenv, using a specific version of Python you have installed (and on your PATH), use the
--python VERSION flag, like so:

Use Python 3:

$ pipenv --python 3

Use Python3.6:

$ pipenv --python 3.6

Use Python 2.7.14:

$ pipenv --python 2.7.14

When given a Python version, like this, Pipenv will automatically scan your system for a Python that matches that
given version.

If a Pipfile hasn’t been created yet, one will be created for you, that looks like this:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[dev-packages]

[packages]

[requires]
python_version = "3.6"

Note the inclusion of [requires] python_version = "3.6". This specifies that your application requires
this version of Python, and will be used automatically when running pipenv install against this Pipfile in
the future (e.g. on other machines). If this is not true, feel free to simply remove this section.

4.1. Basic Usage of Pipenv 17

pipenv Documentation, Release 2018.05.18

If you don’t specify a Python version on the command–line, either the [requires] python_full_version or
python_version will be selected automatically, falling back to whatever your system’s default python installa-
tion is, at time of execution.

4.1.8 Editable Dependencies (e.g. -e .)

You can tell Pipenv to install a path as editable — often this is useful for the current working directory when working
on packages:

$ pipenv install --dev -e .

$ cat Pipfile
...
[dev-packages]
"e1839a8" = {path = ".", editable = true}
...

Note that all sub-dependencies will get added to the Pipfile.lock as well.

Note: Sub-dependencies are not added to the Pipfile.lock if you leave the -e option out.

4.1.9 Environment Management with Pipenv

The three primary commands you’ll use in managing your pipenv environment are $ pipenv install, $
pipenv uninstall, and $ pipenv lock.

$ pipenv install

$ pipenv install is used for installing packages into the pipenv virtual environment and updating your Pipfile.

Along with the basic install command, which takes the form:

$ pipenv install [package names]

The user can provide these additional parameters:

• --two — Performs the installation in a virtualenv using the system python2 link.

• --three — Performs the installation in a virtualenv using the system python3 link.

• --python — Performs the installation in a virtualenv using the provided Python interpreter.

Warning: None of the above commands should be used together. They are also destructive and will
delete your current virtualenv before replacing it with an appropriately versioned one.

Note: The virtualenv created by Pipenv may be different from what you were expecting. Dangerous
characters (i.e. $`!*@" as well as space, line feed, carriage return, and tab) are converted to underscores.
Additionally, the full path to the current folder is encoded into a “slug value” and appended to ensure the
virtualenv name is unique.

18 Chapter 4. Further Documentation Guides

pipenv Documentation, Release 2018.05.18

• --dev — Install both develop and default packages from Pipfile.lock.

• --system — Use the system pip command rather than the one from your virtualenv.

• --ignore-pipfile — Ignore the Pipfile and install from the Pipfile.lock.

• --skip-lock — Ignore the Pipfile.lock and install from the Pipfile. In addition, do not
write out a Pipfile.lock reflecting changes to the Pipfile.

$ pipenv uninstall

$ pipenv uninstall supports all of the parameters in pipenv install, as well as two additional options, --all
and --all-dev.

• --all — This parameter will purge all files from the virtual environment, but leave the Pipfile untouched.

• --all-dev — This parameter will remove all of the development packages from the virtual environment, and
remove them from the Pipfile.

$ pipenv lock

$ pipenv lock is used to create a Pipfile.lock, which declares all dependencies (and sub-dependencies) of
your project, their latest available versions, and the current hashes for the downloaded files. This ensures repeatable,
and most importantly deterministic, builds.

4.1.10 About Shell Configuration

Shells are typically misconfigured for subshell use, so $ pipenv shell --fancy may produce unexpected re-
sults. If this is the case, try $ pipenv shell, which uses “compatibility mode”, and will attempt to spawn a
subshell despite misconfiguration.

A proper shell configuration only sets environment variables like PATH during a login session, not during every
subshell spawn (as they are typically configured to do). In fish, this looks like this:

if status --is-login
set -gx PATH /usr/local/bin $PATH

end

You should do this for your shell too, in your ~/.profile or ~/.bashrc or wherever appropriate.

Note: The shell launched in interactive mode. This means that if your shell reads its configuration from a specific file
for interactive mode (e.g. bash by default looks for a ~/.bashrc configuration file for interactive mode), then you’ll
need to modify (or create) this file.

4.1.11 A Note about VCS Dependencies

Pipenv will resolve the sub–dependencies of VCS dependencies, but only if they are installed in editable mode:

$ pipenv install -e git+https://github.com/requests/requests.git#egg=requests

$ cat Pipfile
[packages]
requests = {git = "https://github.com/requests/requests.git", editable=true}

4.1. Basic Usage of Pipenv 19

pipenv Documentation, Release 2018.05.18

If editable is not true, sub–dependencies will not be resolved.

For more information about other options available when specifying VCS dependencies, please check the Pipfile spec.

4.1.12 Pipfile.lock Security Features

Pipfile.lock takes advantage of some great new security improvements in pip. By default, the Pipfile.
lock will be generated with the sha256 hashes of each downloaded package. This will allow pip to guarantee you’re
installing what you intend to when on a compromised network, or downloading dependencies from an untrusted PyPI
endpoint.

We highly recommend approaching deployments with promoting projects from a development environment into pro-
duction. You can use pipenv lock to compile your dependencies on your development environment and deploy
the compiled Pipfile.lock to all of your production environments for reproducible builds.

4.2 Advanced Usage of Pipenv

This document covers some of Pipenv’s more glorious and advanced features.

4.2.1 Caveats

• Dependencies of wheels provided in a Pipfile will not be captured by $ pipenv lock.

• There are some known issues with using private indexes, related to hashing. We’re actively working to solve
this problem. You may have great luck with this, however.

20 Chapter 4. Further Documentation Guides

https://github.com/pypa/pipfile

pipenv Documentation, Release 2018.05.18

• Installation is intended to be as deterministic as possible — use the --sequential flag to increase this, if
experiencing issues.

4.2.2 Specifying Package Indexes

If you’d like a specific package to be installed with a specific package index, you can do the following:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[[source]]
url = "http://pypi.home.kennethreitz.org/simple"
verify_ssl = false
name = "home"

[dev-packages]

[packages]
requests = {version="*", index="home"}
maya = {version="*", index="pypi"}
records = "*"

Very fancy.

4.2.3 Injecting credentials into Pipfiles via environment variables

Pipenv will expand environment variables (if defined) in your Pipfile. Quite useful if you need to authenticate to a
private PyPI:

[[source]]
url = "https://$USERNAME:${PASSWORD}@mypypi.example.com/simple"
verify_ssl = true
name = "pypi"

Luckily - pipenv will hash your Pipfile before expanding environment variables (and, helpfully, will substitute the
environment variables again when you install from the lock file - so no need to commit any secrets! Woo!)

4.2.4 Specifying Basically Anything

If you’d like to specify that a specific package only be installed on certain systems, you can use PEP 508 specifiers to
accomplish this.

Here’s an example Pipfile, which will only install pywinusb on Windows systems:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
requests = "*"
pywinusb = {version = "*", sys_platform = "== 'win32'"}

4.2. Advanced Usage of Pipenv 21

https://www.python.org/dev/peps/pep-0508/

pipenv Documentation, Release 2018.05.18

Voilà!

Here’s a more complex example:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[packages]
unittest2 = {version = ">=1.0,<3.0", markers="python_version < '2.7.9' or (python_
→˓version >= '3.0' and python_version < '3.4')"}

Magic. Pure, unadulterated magic.

4.2.5 Deploying System Dependencies

You can tell Pipenv to install a Pipfile’s contents into its parent system with the --system flag:

$ pipenv install --system

This is useful for Docker containers, and deployment infrastructure (e.g. Heroku does this).

Also useful for deployment is the --deploy flag:

$ pipenv install --system --deploy

This will fail a build if the Pipfile.lock is out–of–date, instead of generating a new one.

4.2.6 Pipenv and Other Python Distributions

To use Pipenv with a third-party Python distribution(e.g. Anaconda), you simply provide the path to the Python binary:

$ pipenv install --python=/path/to/python

Anaconda uses Conda to manage packages. To reuse Conda–installed Python packages, use the --site-packages
flag:

$ pipenv --python=/path/to/python --site-packages

4.2.7 Generating a requirements.txt

You can convert a Pipfile and Pipfile.lock into a requirements.txt file very easily, and get all the
benefits of extras and other goodies we have included.

Let’s take this Pipfile:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[packages]
requests = {version="*"}

And generate a requirements.txt out of it:

22 Chapter 4. Further Documentation Guides

pipenv Documentation, Release 2018.05.18

$ pipenv lock -r
chardet==3.0.4
requests==2.18.4
certifi==2017.7.27.1
idna==2.6
urllib3==1.22

If you wish to generate a requirements.txt with only the development requirements you can do that too! Let’s
take the following Pipfile:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[dev-packages]
pytest = {version="*"}

And generate a requirements.txt out of it:

$ pipenv lock -r --dev
py==1.4.34
pytest==3.2.3

Very fancy.

4.2.8 Detection of Security Vulnerabilities

Pipenv includes the safety package, and will use it to scan your dependency graph for known security vulnerabilities!

Example:

$ cat Pipfile
[packages]
django = "==1.10.1"

$ pipenv check
Checking PEP 508 requirements...
Passed!
Checking installed package safety...

33075: django >=1.10,<1.10.3 resolved (1.10.1 installed)!
Django before 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3,
→˓when settings.DEBUG is True, allow remote attackers to conduct DNS rebinding
→˓attacks by leveraging failure to validate the HTTP Host header against settings.
→˓ALLOWED_HOSTS.

33076: django >=1.10,<1.10.3 resolved (1.10.1 installed)!
Django 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3 use a
→˓hardcoded password for a temporary database user created when running tests with an
→˓Oracle database, which makes it easier for remote attackers to obtain access to the
→˓database server by leveraging failure to manually specify a password in the
→˓database settings TEST dictionary.

33300: django >=1.10,<1.10.7 resolved (1.10.1 installed)!
CVE-2017-7233: Open redirect and possible XSS attack via user-supplied numeric
→˓redirect URLs
==

4.2. Advanced Usage of Pipenv 23

https://github.com/pyupio/safety

pipenv Documentation, Release 2018.05.18

Django relies on user input in some cases (e.g.
:func:`django.contrib.auth.views.login` and :doc:`i18n </topics/i18n/index>`)
to redirect the user to an "on success" URL. The security check for these
redirects (namely ``django.utils.http.is_safe_url()``) considered some numeric
URLs (e.g. ``http:999999999``) "safe" when they shouldn't be.

Also, if a developer relies on ``is_safe_url()`` to provide safe redirect
targets and puts such a URL into a link, they could suffer from an XSS attack.

CVE-2017-7234: Open redirect vulnerability in ``django.views.static.serve()``
===

A maliciously crafted URL to a Django site using the
:func:`~django.views.static.serve` view could redirect to any other domain. The
view no longer does any redirects as they don't provide any known, useful
functionality.

Note, however, that this view has always carried a warning that it is not
hardened for production use and should be used only as a development aid.

Note: In order to enable this functionality while maintaining its permissive copyright license, pipenv embeds an API
client key for the backend Safety API operated by pyup.io rather than including a full copy of the CC-BY-NC-SA
licensed Safety-DB database. This embedded client key is shared across all pipenv check users, and hence will be
subject to API access throttling based on overall usage rather than individual client usage.

4.2.9 Community Integrations

There are a range of community-maintained plugins and extensions available for a range of editors and IDEs, as well
as different products which integrate with Pipenv projects:

• Heroku (Cloud Hosting)

• Platform.sh (Cloud Hosting)

• PyUp (Security Notification)

• Emacs (Editor Integration)

• Fish Shell (Automatic $ pipenv shell!)

• VS Code (Editor Integration)

Works in progress:

• Sublime Text (Editor Integration)

• PyCharm (Editor Integration)

• Mysterious upcoming Google Cloud product (Cloud Hosting)

4.2.10 Open a Module in Your Editor

Pipenv allows you to open any Python module that is installed (including ones in your codebase), with the $ pipenv
open command:

24 Chapter 4. Further Documentation Guides

https://heroku.com/python
https://platform.sh/hosting/python
https://pyup.io
https://github.com/pwalsh/pipenv.el
https://github.com/fisherman/pipenv
https://code.visualstudio.com/docs/python/environments
https://github.com/kennethreitz/pipenv-sublime
https://www.jetbrains.com/pycharm/download/

pipenv Documentation, Release 2018.05.18

$ pipenv install -e git+https://github.com/kennethreitz/background.git#egg=background
Installing -e git+https://github.com/kennethreitz/background.git#egg=background...
...
Updated Pipfile.lock!

$ pipenv open background
Opening '/Users/kennethreitz/.local/share/virtualenvs/hmm-mGOawwm_/src/background/
→˓background.py' in your EDITOR.

This allows you to easily read the code you’re consuming, instead of looking it up on GitHub.

Note: The standard EDITOR environment variable is used for this. If you’re using VS Code, for example, you’ll
want to export EDITOR=code (if you’re on macOS you will want to install the command on to your PATH first).

4.2.11 Automatic Python Installation

If you have pyenv installed and configured, Pipenv will automatically ask you if you want to install a required version
of Python if you don’t already have it available.

This is a very fancy feature, and we’re very proud of it:

$ cat Pipfile
[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true

[dev-packages]

[packages]
requests = "*"

[requires]
python_version = "3.6"

$ pipenv install
Warning: Python 3.6 was not found on your system...
Would you like us to install latest CPython 3.6 with pyenv? [Y/n]: y
Installing CPython 3.6.2 with pyenv (this may take a few minutes)...
...
Making Python installation global...
Creating a virtualenv for this project...
Using /Users/kennethreitz/.pyenv/shims/python3 to create virtualenv...
...
No package provided, installing all dependencies.
...
Installing dependencies from Pipfile.lock...

5/5 -- 00:00:03
To activate this project's virtualenv, run the following:
$ pipenv shell

Pipenv automatically honors both the python_full_version and python_version PEP 508 specifiers.

4.2. Advanced Usage of Pipenv 25

https://code.visualstudio.com/docs/setup/mac#_launching-from-the-command-line
https://github.com/pyenv/pyenv#simple-python-version-management-pyenv
https://www.python.org/dev/peps/pep-0508/

pipenv Documentation, Release 2018.05.18

4.2.12 Automatic Loading of .env

If a .env file is present in your project, $ pipenv shell and $ pipenv run will automatically load it, for
you:

$ cat .env
HELLO=WORLD

$ pipenv run python
Loading .env environment variables...
Python 2.7.13 (default, Jul 18 2017, 09:17:00)
[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.environ['HELLO']
'WORLD'

This is very useful for keeping production credentials out of your codebase. We do not recommend committing .env
files into source control!

If your .env file is located in a different path or has a different name you may set the PIPENV_DOTENV_LOCATION
environment variable:

$ PIPENV_DOTENV_LOCATION=/path/to/.env pipenv shell

To prevent pipenv from loading the .env file, set the PIPENV_DONT_LOAD_ENV environment variable:

$ PIPENV_DONT_LOAD_ENV=1 pipenv shell

4.2.13 Custom Script Shortcuts

Pipenv supports to customize shortcuts in the scripts section. pipenv run will automatically load it and find
the correct command to replace with. Given the Pipfile:

[scripts]
printfoo = "python -c \"print('foo')\""

You can type in your terminal to run:

$ pipenv run printfoo
foo

4.2.14 Support for Environment Variables

Pipenv supports the usage of environment variables in values. For example:

[[source]]
url = "https://${PYPI_USERNAME}:${PYPI_PASSWORD}@my_private_repo.example.com/simple"
verify_ssl = true
name = "pypi"

[dev-packages]

[packages]
requests = {version="*", index="home"}

26 Chapter 4. Further Documentation Guides

pipenv Documentation, Release 2018.05.18

maya = {version="*", index="pypi"}
records = "*"

Environment variables may be specified as ${MY_ENVAR} or $MY_ENVAR. On Windows, %MY_ENVAR% is sup-
ported in addition to ${MY_ENVAR} or $MY_ENVAR.

4.2.15 Configuration With Environment Variables

Pipenv comes with a handful of options that can be enabled via shell environment variables. To activate them, simply
create the variable in your shell and pipenv will detect it.

• PIPENV_DEFAULT_PYTHON_VERSION — Use this version of Python when creating new virtual environ-
ments, by default (e.g. 3.6).

• PIPENV_SHELL_FANCY — Always use fancy mode when invoking pipenv shell.

• PIPENV_VENV_IN_PROJECT — If set, use .venv in your project directory instead of the global virtualenv
manager pew.

• PIPENV_COLORBLIND — Disable terminal colors, for some reason.

• PIPENV_NOSPIN — Disable terminal spinner, for cleaner logs. Automatically set in CI environments.

• PIPENV_MAX_DEPTH — Set to an integer for the maximum number of directories to recursively search for a
Pipfile.

• PIPENV_TIMEOUT — Set to an integer for the max number of seconds Pipenv will wait for virtualenv creation
to complete. Defaults to 120 seconds.

• PIPENV_INSTALL_TIMEOUT — Set to an integer for the max number of seconds Pipenv will wait for pack-
age installation before timing out. Defaults to 900 seconds.

• PIPENV_IGNORE_VIRTUALENVS — Set to disable automatically using an activated virtualenv over the cur-
rent project’s own virtual environment.

• PIPENV_PIPFILE — When running pipenv from a $PWD other than the same directory where the Pipfile is
located, instruct pipenv to find the Pipfile in the location specified by this environment variable.

• PIPENV_CACHE_DIR — Location for Pipenv to store it’s package cache.

• PIPENV_HIDE_EMOJIS — Disable emojis in output.

• PIPENV_DOTENV_LOCATION — Location for Pipenv to load your project’s .env.

• PIPENV_DONT_LOAD_ENV — Tell Pipenv not to load the .env files automatically.

If you’d like to set these environment variables on a per-project basis, I recommend utilizing the fantastic direnv
project, in order to do so.

Also note that pip itself supports environment variables, if you need additional customization.

For example:

$ PIP_INSTALL_OPTION="-- -DCMAKE_BUILD_TYPE=Release" pipenv install -e .

4.2.16 Custom Virtual Environment Location

Pipenv’s underlying pew dependency will automatically honor the WORKON_HOME environment variable, if you have
it set — so you can tell pipenv to store your virtual environments wherever you want, e.g.:

4.2. Advanced Usage of Pipenv 27

https://direnv.net
https://pip.pypa.io/en/stable/user_guide/#environment-variables

pipenv Documentation, Release 2018.05.18

export WORKON_HOME=~/.venvs

In addition, you can also have Pipenv stick the virtualenv in project/.venv by setting the
PIPENV_VENV_IN_PROJECT environment variable.

4.2.17 Testing Projects

Pipenv is being used in projects like Requests for declaring development dependencies and running the test suite.

We’ve currently tested deployments with both Travis-CI and tox with success.

Travis CI

An example Travis CI setup can be found in Requests. The project uses a Makefile to define common functions such
as its init and tests commands. Here is a stripped down example .travis.yml:

language: python
python:

- "2.6"
- "2.7"
- "3.3"
- "3.4"
- "3.5"
- "3.6"
- "3.7-dev"

command to install dependencies
install: "make"

command to run tests
script:

- make test

and the corresponding Makefile:

init:
pip install pipenv
pipenv install --dev

test:
pipenv run py.test tests

Tox Automation Project

Alternatively, you can configure a tox.ini like the one below for both local and external testing:

[tox]
envlist = flake8-py3, py26, py27, py33, py34, py35, py36, pypy

[testenv]
deps = pipenv
commands=

pipenv install --dev
pipenv run py.test tests

28 Chapter 4. Further Documentation Guides

https://github.com/kennethreitz/requests
https://travis-ci.org/
https://tox.readthedocs.io/en/latest/
https://github.com/kennethreitz/requests

pipenv Documentation, Release 2018.05.18

[testenv:flake8-py3]
basepython = python3.4
commands=

pipenv install --dev
pipenv run flake8 --version
pipenv run flake8 setup.py docs project test

Pipenv will automatically use the virtualenv provided by tox. If pipenv install --dev installs e.g. pytest,
then installed command py.testwill be present in given virtualenv and can be called directly by py.test tests
instead of pipenv run py.test tests.

You might also want to add --ignore-pipfile to pipenv install, as to not accidentally modify the lock-
file on each test run. This causes Pipenv to ignore changes to the Pipfile and (more importantly) prevents it
from adding the current environment to Pipfile.lock. This might be important as the current environment (i.e.
the virtualenv provisioned by tox) will usually contain the current project (which may or may not be desired) and
additional dependencies from tox’s deps directive. The initial provisioning may alternatively be disabled by adding
skip_install = True to tox.ini.

This method requires you to be explicit about updating the lock-file, which is probably a good idea in any case.

A 3rd party plugin, tox-pipenv is also available to use Pipenv natively with tox.

4.2.18 Shell Completion

To enable completion in fish, add this to your config:

eval (pipenv --completion)

Alternatively, with bash or zsh, add this to your config:

eval "$(pipenv --completion)"

Magic shell completions are now enabled!

4.2.19 Working with Platform-Provided Python Components

It’s reasonably common for platform specific Python bindings for operating system interfaces to only be available
through the system package manager, and hence unavailable for installation into virtual environments with pip. In
these cases, the virtual environment can be created with access to the system site-packages directory:

$ pipenv --three --site-packages

To ensure that all pip-installable components actually are installed into the virtual environment and system pack-
ages are only used for interfaces that don’t participate in Python-level dependency resolution at all, use the
PIP_IGNORE_INSTALLED setting:

$ PIP_IGNORE_INSTALLED=1 pipenv install --dev

4.2.20 Pipfile vs setup.py

There is a subtle but very important distinction to be made between applications and libraries. This is a very common
source of confusion in the Python community.

4.2. Advanced Usage of Pipenv 29

https://tox-pipenv.readthedocs.io/en/latest/

pipenv Documentation, Release 2018.05.18

Libraries provide reusable functionality to other libraries and applications (let’s use the umbrella term projects here).
They are required to work alongside other libraries, all with their own set of subdependencies. They define abstract
dependencies. To avoid version conflicts in subdependencies of different libraries within a project, libraries should
never ever pin dependency versions. Although they may specify lower or (less frequently) upper bounds, if they rely
on some specific feature/fix/bug. Library dependencies are specified via install_requires in setup.py.

Libraries are ultimately meant to be used in some application. Applications are different in that they usually are not
depended on by other projects. They are meant to be deployed into some specific environment and only then should
the exact versions of all their dependencies and subdependencies be made concrete. To make this process easier is
currently the main goal of Pipenv.

To summarize:

• For libraries, define abstract dependencies via install_requires in setup.py. The decision of which
version exactly to be installed and where to obtain that dependency is not yours to make!

• For applications, define dependencies and where to get them in the Pipfile and use this file to update the set of
concrete dependencies in Pipfile.lock. This file defines a specific idempotent environment that is known
to work for your project. The Pipfile.lock is your source of truth. The Pipfile is a convenience for
you to create that lock-file, in that it allows you to still remain somewhat vague about the exact version of a
dependency to be used. Pipenv is there to help you define a working conflict-free set of specific dependency-
versions, which would otherwise be a very tedious task.

• Of course, Pipfile and Pipenv are still useful for library developers, as they can be used to define a develop-
ment or test environment.

• And, of course, there are projects for which the distinction between library and application isn’t that clear. In
that case, use install_requires alongside Pipenv and Pipfile.

You can also do this:

$ pipenv install -e .

This will tell Pipenv to lock all your setup.py–declared dependencies.

4.2.21 Changing Pipenv’s Cache Location

You can force Pipenv to use a different cache location by setting the environment variable PIPENV_CACHE_DIR to
the location you wish. This is useful in the same situations that you would change PIP_CACHE_DIR to a different
directory.

4.2.22 Changing Where Pipenv Stores Virtualenvs

By default, Pipenv stores all of your virtualenvs in a single place. Usually this isn’t a problem, but if
you’d like to change it for developer ergonomics, or if it’s causing issues on build servers you can set
PIPENV_VENV_IN_PROJECT to create the virtualenv inside the root of your project.

4.2.23 Changing Default Python Versions

By default, Pipenv will initialize a project using whatever version of python the python3 is. Besides starting a project
with the --three or --two flags, you can also use PIPENV_DEFAULT_PYTHON_VERSION to specify what
version to use when starting a project when --three or --two aren’t used.

30 Chapter 4. Further Documentation Guides

pipenv Documentation, Release 2018.05.18

4.3 Frequently Encountered Pipenv Problems

Pipenv is constantly being improved by volunteers, but is still a very young project with limited resources, and has
some quirks that needs to be dealt with. We need everyone’s help (including yours!).

Here are some common questions people have using Pipenv. Please take a look below and see if they resolve your
problem.

Note: Make sure you’re running the newest Pipenv version first!

4.3.1 Your dependencies could not be resolved

Make sure your dependencies actually do resolve. If you’re confident they are, you may need to clear your resolver
cache. Run the following command:

pipenv run pipenv-resolver --clear

and try again.

If this does not work, try manually deleting the whole cache directory. It is usually one of the following locations:

• ~/Library/Caches/pipenv (macOS)

• %LOCALAPPDATA%\pipenv\pipenv\Cache (Windows)

• ~/.cache/pipenv (other operating systems)

Pipenv does not install prereleases (i.e. a version with an alpha/beta/etc. suffix, such as 1.0b1) by default. You will
need to pass the --pre flag in your command, or set

[pipenv]
allow_prereleases = true

in your Pipfile.

4.3.2 No module named <module name>

This is usually a result of mixing Pipenv with system packages. We strongly recommend installing Pipenv in an
isolated environment. Uninstall all existing Pipenv installations, and see Homebrew Installation of Pipenv to choose
one of the recommended way to install Pipenv instead.

4.3.3 My pyenv-installed Python is not found

Make sure you have PYENV_ROOT set correctly. Pipenv only supports CPython distributions, with version name like
3.6.4 or similar.

4.3.4 Pipenv does not respect pyenv’s global and local Python versions

Pipenv by default uses the Python it is installed against to create the virtualenv. You can set the --python option, or
$PYENV_ROOT/shims/python to let it consult pyenv when choosing the interpreter. See Specifying Versions of
a Package for more information.

4.3. Frequently Encountered Pipenv Problems 31

pipenv Documentation, Release 2018.05.18

If you want Pipenv to automatically “do the right thing”, you can set the environment variable PIPENV_PYTHON
to $PYENV_ROOT/shims/python. This will make Pipenv use pyenv’s active Python version to create virtual
environments by default.

4.3.5 ValueError: unknown locale: UTF-8

macOS has a bug in its locale detection that prevents us from detecting your shell encoding correctly. This can also be
an issue on other systems if the locale variables do not specify an encoding.

The workaround is to set the following two environment variables to a standard localization format:

• LC_ALL

• LANG

For Bash, for example, you can add the following to your ~/.bash_profile:

export LC_ALL='en_US.UTF-8'
export LANG='en_US.UTF-8'

For Zsh, the file to edit is ~/.zshrc.

Note: You can change both the en_US and UTF-8 part to the language/locale and encoding you use.

4.3.6 /bin/pip: No such file or directory

This may be related to your locale setting. See ValueError: unknown locale: UTF-8 for a possible solution.

4.3.7 shell does not show the virtualenv’s name in prompt

This is intentional. You can do it yourself with either shell plugins, or clever PS1 configuration. If you really want it
back, use

pipenv shell -c

instead (not available on Windows).

4.3.8 Pipenv does not respect dependencies in setup.py

No, it does not, intentionally. Pipfile and setup.py serve different purposes, and should not consider each other by
default. See Pipfile vs setup.py for more information.

32 Chapter 4. Further Documentation Guides

CHAPTER 5

Pipenv Usage

5.1 pipenv

pipenv [OPTIONS] COMMAND [ARGS]...

Options

--where
Output project home information.

--venv
Output virtualenv information.

--py
Output Python interpreter information.

--envs
Output Environment Variable options.

--rm
Remove the virtualenv.

--bare
Minimal output.

--completion
Output completion (to be eval’d).

--man
Display manpage.

--three, --two
Use Python 3/2 when creating virtualenv.

33

pipenv Documentation, Release 2018.05.18

--python <python>
Specify which version of Python virtualenv should use.

--site-packages
Enable site-packages for the virtualenv.

--version
Show the version and exit.

5.1.1 check

pipenv check [OPTIONS] [ARGS]...

Options

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

--system
Use system Python.

--unused <unused>
Given a code path, show potentially unused dependencies.

Arguments

ARGS
Optional argument(s)

5.1.2 clean

pipenv clean [OPTIONS]

Options

-v, --verbose
Verbose mode.

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

--dry-run
Just output unneeded packages.

34 Chapter 5. Pipenv Usage

pipenv Documentation, Release 2018.05.18

5.1.3 graph

pipenv graph [OPTIONS]

Options

--bare
Minimal output.

--json
Output JSON.

--reverse
Reversed dependency graph.

5.1.4 install

pipenv install [OPTIONS] [PACKAGE_NAME] [MORE_PACKAGES]...

Options

-d, --dev
Install package(s) in [dev-packages].

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

--system
System pip management.

-r, --requirements <requirements>
Import a requirements.txt file.

-c, --code <code>
Import from codebase.

-v, --verbose
Verbose mode.

--ignore-pipfile
Ignore Pipfile when installing, using the Pipfile.lock.

--sequential
Install dependencies one-at-a-time, instead of concurrently.

--skip-lock
Ignore locking mechanisms when installing—use the Pipfile, instead.

--deploy
Abort if the Pipfile.lock is out–of–date, or Python version is wrong.

--pre
Allow pre–releases.

5.1. pipenv 35

pipenv Documentation, Release 2018.05.18

--keep-outdated
Keep out–dated dependencies from being updated in Pipfile.lock.

--selective-upgrade
Update specified packages.

Arguments

PACKAGE_NAME
Optional argument

MORE_PACKAGES
Optional argument(s)

5.1.5 lock

pipenv lock [OPTIONS]

Options

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

-v, --verbose
Verbose mode.

-r, --requirements
Generate output compatible with requirements.txt.

-d, --dev
Generate output compatible with requirements.txt for the development dependencies.

--clear
Clear the dependency cache.

--pre
Allow pre–releases.

--keep-outdated
Keep out–dated dependencies from being updated in Pipfile.lock.

5.1.6 open

pipenv open [OPTIONS] MODULE

Options

--three, --two
Use Python 3/2 when creating virtualenv.

36 Chapter 5. Pipenv Usage

pipenv Documentation, Release 2018.05.18

--python <python>
Specify which version of Python virtualenv should use.

Arguments

MODULE
Required argument

5.1.7 run

pipenv run [OPTIONS] COMMAND [ARGS]...

Options

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

Arguments

COMMAND
Required argument

ARGS
Optional argument(s)

5.1.8 shell

pipenv shell [OPTIONS] [SHELL_ARGS]...

Options

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

--fancy
Run in shell in fancy mode (for elegantly configured shells).

--anyway
Always spawn a subshell, even if one is already spawned.

5.1. pipenv 37

pipenv Documentation, Release 2018.05.18

Arguments

SHELL_ARGS
Optional argument(s)

5.1.9 sync

pipenv sync [OPTIONS]

Options

-v, --verbose
Verbose mode.

-d, --dev
Additionally install package(s) in [dev-packages].

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

--bare
Minimal output.

--clear
Clear the dependency cache.

--sequential
Install dependencies one-at-a-time, instead of concurrently.

5.1.10 uninstall

pipenv uninstall [OPTIONS] [PACKAGE_NAME] [MORE_PACKAGES]...

Options

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

--system
System pip management.

-v, --verbose
Verbose mode.

--lock
Lock afterwards.

38 Chapter 5. Pipenv Usage

pipenv Documentation, Release 2018.05.18

--all-dev
Un-install all package from [dev-packages].

--all
Purge all package(s) from virtualenv. Does not edit Pipfile.

--keep-outdated
Keep out–dated dependencies from being updated in Pipfile.lock.

Arguments

PACKAGE_NAME
Optional argument

MORE_PACKAGES
Optional argument(s)

5.1.11 update

pipenv update [OPTIONS] [MORE_PACKAGES]... [PACKAGE]

Options

--three, --two
Use Python 3/2 when creating virtualenv.

--python <python>
Specify which version of Python virtualenv should use.

-v, --verbose
Verbose mode.

-d, --dev
Install package(s) in [dev-packages].

--clear
Clear the dependency cache.

--bare
Minimal output.

--pre
Allow pre–releases.

--keep-outdated
Keep out–dated dependencies from being updated in Pipfile.lock.

--sequential
Install dependencies one-at-a-time, instead of concurrently.

--outdated
List out–of–date dependencies.

--dry-run
List out–of–date dependencies.

5.1. pipenv 39

pipenv Documentation, Release 2018.05.18

Arguments

MORE_PACKAGES
Optional argument(s)

PACKAGE
Optional argument

40 Chapter 5. Pipenv Usage

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

41

pipenv Documentation, Release 2018.05.18

42 Chapter 6. Indices and tables

Index

Symbols
–all

pipenv-uninstall command line option, 39
–all-dev

pipenv-uninstall command line option, 38
–anyway

pipenv-shell command line option, 37
–bare

pipenv command line option, 33
pipenv-graph command line option, 35
pipenv-sync command line option, 38
pipenv-update command line option, 39

–clear
pipenv-lock command line option, 36
pipenv-sync command line option, 38
pipenv-update command line option, 39

–completion
pipenv command line option, 33

–deploy
pipenv-install command line option, 35

–dry-run
pipenv-clean command line option, 34
pipenv-update command line option, 39

–envs
pipenv command line option, 33

–fancy
pipenv-shell command line option, 37

–ignore-pipfile
pipenv-install command line option, 35

–json
pipenv-graph command line option, 35

–keep-outdated
pipenv-install command line option, 35
pipenv-lock command line option, 36
pipenv-uninstall command line option, 39
pipenv-update command line option, 39

–lock
pipenv-uninstall command line option, 38

–man

pipenv command line option, 33
–outdated

pipenv-update command line option, 39
–pre

pipenv-install command line option, 35
pipenv-lock command line option, 36
pipenv-update command line option, 39

–py
pipenv command line option, 33

–python <python>
pipenv command line option, 33
pipenv-check command line option, 34
pipenv-clean command line option, 34
pipenv-install command line option, 35
pipenv-lock command line option, 36
pipenv-open command line option, 36
pipenv-run command line option, 37
pipenv-shell command line option, 37
pipenv-sync command line option, 38
pipenv-uninstall command line option, 38
pipenv-update command line option, 39

–reverse
pipenv-graph command line option, 35

–rm
pipenv command line option, 33

–selective-upgrade
pipenv-install command line option, 36

–sequential
pipenv-install command line option, 35
pipenv-sync command line option, 38
pipenv-update command line option, 39

–site-packages
pipenv command line option, 34

–skip-lock
pipenv-install command line option, 35

–system
pipenv-check command line option, 34
pipenv-install command line option, 35
pipenv-uninstall command line option, 38

–three, –two

43

pipenv Documentation, Release 2018.05.18

pipenv command line option, 33
pipenv-check command line option, 34
pipenv-clean command line option, 34
pipenv-install command line option, 35
pipenv-lock command line option, 36
pipenv-open command line option, 36
pipenv-run command line option, 37
pipenv-shell command line option, 37
pipenv-sync command line option, 38
pipenv-uninstall command line option, 38
pipenv-update command line option, 39

–unused <unused>
pipenv-check command line option, 34

–venv
pipenv command line option, 33

–version
pipenv command line option, 34

–where
pipenv command line option, 33

-c, –code <code>
pipenv-install command line option, 35

-d, –dev
pipenv-install command line option, 35
pipenv-lock command line option, 36
pipenv-sync command line option, 38
pipenv-update command line option, 39

-r, –requirements
pipenv-lock command line option, 36

-r, –requirements <requirements>
pipenv-install command line option, 35

-v, –verbose
pipenv-clean command line option, 34
pipenv-install command line option, 35
pipenv-lock command line option, 36
pipenv-sync command line option, 38
pipenv-uninstall command line option, 38
pipenv-update command line option, 39

A
ARGS

pipenv-check command line option, 34
pipenv-run command line option, 37

C
COMMAND

pipenv-run command line option, 37

M
MODULE

pipenv-open command line option, 37
MORE_PACKAGES

pipenv-install command line option, 36
pipenv-uninstall command line option, 39
pipenv-update command line option, 40

P
PACKAGE

pipenv-update command line option, 40
PACKAGE_NAME

pipenv-install command line option, 36
pipenv-uninstall command line option, 39

pipenv command line option
–bare, 33
–completion, 33
–envs, 33
–man, 33
–py, 33
–python <python>, 33
–rm, 33
–site-packages, 34
–three, –two, 33
–venv, 33
–version, 34
–where, 33

pipenv-check command line option
–python <python>, 34
–system, 34
–three, –two, 34
–unused <unused>, 34
ARGS, 34

pipenv-clean command line option
–dry-run, 34
–python <python>, 34
–three, –two, 34
-v, –verbose, 34

pipenv-graph command line option
–bare, 35
–json, 35
–reverse, 35

pipenv-install command line option
–deploy, 35
–ignore-pipfile, 35
–keep-outdated, 35
–pre, 35
–python <python>, 35
–selective-upgrade, 36
–sequential, 35
–skip-lock, 35
–system, 35
–three, –two, 35
-c, –code <code>, 35
-d, –dev, 35
-r, –requirements <requirements>, 35
-v, –verbose, 35
MORE_PACKAGES, 36
PACKAGE_NAME, 36

pipenv-lock command line option
–clear, 36
–keep-outdated, 36

44 Index

pipenv Documentation, Release 2018.05.18

–pre, 36
–python <python>, 36
–three, –two, 36
-d, –dev, 36
-r, –requirements, 36
-v, –verbose, 36

pipenv-open command line option
–python <python>, 36
–three, –two, 36
MODULE, 37

pipenv-run command line option
–python <python>, 37
–three, –two, 37
ARGS, 37
COMMAND, 37

pipenv-shell command line option
–anyway, 37
–fancy, 37
–python <python>, 37
–three, –two, 37
SHELL_ARGS, 38

pipenv-sync command line option
–bare, 38
–clear, 38
–python <python>, 38
–sequential, 38
–three, –two, 38
-d, –dev, 38
-v, –verbose, 38

pipenv-uninstall command line option
–all, 39
–all-dev, 38
–keep-outdated, 39
–lock, 38
–python <python>, 38
–system, 38
–three, –two, 38
-v, –verbose, 38
MORE_PACKAGES, 39
PACKAGE_NAME, 39

pipenv-update command line option
–bare, 39
–clear, 39
–dry-run, 39
–keep-outdated, 39
–outdated, 39
–pre, 39
–python <python>, 39
–sequential, 39
–three, –two, 39
-d, –dev, 39
-v, –verbose, 39
MORE_PACKAGES, 40
PACKAGE, 40

S
SHELL_ARGS

pipenv-shell command line option, 38

Index 45

	Install Pipenv Today!
	Pipenv & Virtual Environments
	☤ Homebrew Installation of Pipenv
	☤ Pragmatic Installation of Pipenv
	☤ Crude Installation of Pipenv

	User Testimonials
	☤ Pipenv Features
	Basic Concepts
	Other Commands

	Further Documentation Guides
	Basic Usage of Pipenv
	Advanced Usage of Pipenv
	Frequently Encountered Pipenv Problems

	☤ Pipenv Usage
	pipenv

	Indices and tables

